
INSTALLATION INSTRUCTIONS

PACKAGE AIR CONDITIONER

FEATURING R-410A 13 SEER SERIES - (3&5Tons)

RECOGNIZE THIS SYMBOL AS AN INDICATION OF IMPORTANT SAFETY INFORMATION

These instructions are intended as an aid to qualified, licensed service personnel for proper installation, adjustment and operation of this unit. Read these instructions thoroughly before attempting installation or operation. Failure to follow these instructions may result in improper installation, adjustment, service or maintenance possibly resulting in fire, electrical shock, property damage, personal injury or death.

DO NOT DESTROY THIS MANUAL

Please read carefully and keep in a safe place for future reference by a serviceman.

TABLE OF CONTENTS

1.0 SAFETY	3
1.1 INSPECTION	
1.2 LIMITATIONS	4
2.0 INSTALLATION	
2.1 PRE-INSTALLATION	
2.2 CLEARANCE	
2.3 RIGGING AND HANDING	
3.0 DUCTWORK	
4.0 CONDENSATE DRAIN CONNECTION	
4.1 INSTALL DRAIN PIPE	
5.0 FILTERS	
6.0 ELECTRICAL WIRING	
6.2 GROUNDING	
6.3 CONTROL WIRING	
7.0 AIRFLOW PERFORMANCE	
7.1 AIRFLOW PERFORMANCE DATA	
8.0 SYSTEM OPERATION	
8.1 COMPRESSOR CRANKCASE HEATER	
8.2 PROTECTION	
8.3 THERMOSTAT SIGNALS	20
9.0 OPERATION CHECK-UP	
10.0 TROUBLE SHOOTING	21
LIST OF TABLES	
	11
TABLE 6-1 13 SEER HEAT PUMP W/WITHOUT ELECTRIC HEAT	
TABLE 6-2 13 SEER PHYSICAL DATA	16
TABLE 7-1 DUCT APPLICATION(208V)	
TABLE 7-2 DUCT APPLICATION(230V)	17
TABLE 7-3 &7-4 REFRIGERANT CHARGE FOR A/C SYSTEM	
TABLE 8-1 THERMOSTAT SIGNALS	
TABLE 8-2 THERMOSTAT WIRE COLOR	20
LIST OF FIGURES	
	_

FIG. 2-1 COMPONENT LOCATION	6
FIG. 2-2 UNIT DIMENSIONS.	
FIG. 2-3 DIMENSIONS BACK AND BOTTOM	8
FIG. 2-4 UNIT DIMENSIONS	9
FIG. 2-5 DIMENSIONS BACK AND BOTTOM	10
FIG. 6-1 TYPICAL FIELD CONTROL WIRING DIAGRAM	14
FIG. 6-2 TYPICAL FIELD POWER WIRING DIAGRAM	14
AC SYSTEM WIRING DIAGRAM (36/60)	22

This document is customer property and is to remain with this unit.

These instructions do not cover all the different variations of systems nor does it provide for every possible contingency to be met in connection with installation.

All phases of this installation must comply with NATIONAL, STATE and LOCAL CODES. If additional information is required please contact your local distributor.

1.0 SAFETY

When you see the symbols below on the labels or in the manuals, be alert to the potential or immediate hazards of personal injury, property and/or product damage. It is the owner's or installer's responsibility to comply with all safety instructions and information accompanying these symbols.

WARNING: This is a safety alert symbol indicating a potential hazardous situation, which could result in personal injury, property and/or product damage or death.

CAUTION: This is a safety alert symbol indicating a potential hazardous situation, which could result in moderate personal injury, property and/or product damage.

WARNING

These instructions are intended as an aid to qualified, licensed service personnel for proper installation, adjustment and operation of this unit. Read these instructions thoroughly before attempting installation or operation. Failure to follow these instructions may result in improper installation, adjustment, service or maintenance possibly resulting in fire, electrical shock, property damage, personal injury or death.

WARNING

The manufacturer's warranty does not cover any damage or defect to the heat pump caused by the attachment or use of any components, accessories or devices (other than those authorized by the manufacturer) into, onto or in conjunction with the heat pump. You should be aware that the use of unauthorized components, accessories or devices may adversely affect the operation of the heat pump and may also endanger life and property. The manufacturer disclaimer any responsibility for such loss or injury resulting from the use of such unauthorized components, accessories or devices.

WARNING

Disconnect all power to the unit before starting maintenance. Failure to do so can result in severe electrical shock or death.

WARNING

Do not, under any circumstances, connect return ductwork to any other heat producing device such as a fireplace insert, stove, etc. Unauthorized use of such devices may result in fire, carbon monoxide poisoning, explosion, property damage, severe personal injury or death.

WARNING

The unit must be permanently grounded. A grounding lug is provided. Failure to ground this unit can result in fire or electrical shock causing property damage, severe personal injury or death.

WARNING

Only electric heater kits supplied by this manufacturer as described in this publication have been designed, tested, and evaluated by a nationally recognized safety testing agency for use with this unit. Use of any other manufactured electric heaters installed within this unit may cause hazardous conditions resulting in property damage, fire, body injury or death.

WARNING

Proposition 65: This appliance contains fiberglass insulation. Respirable particles of fiberglass are known to the state of California to cause cancer.

CAUTION

Only use this unit in well-ventilated spaces and ensure that there are no obstructions that could impede the airflow into and out of the unit.

Do not use this unit in the following locations:

- Locations with mineral oil.
- Locations with saline atmospheres, such as seaside locations.
- Locations with sulphurous atmospheres, such as near natural hot springs.
- Where high voltage electricity is present, such as in certain industrial locations.
- On vehicles or vessels, such as trucks or ferry boats.
- Where exposure to oily or very humid air may occur, such as kitchens.
- In proximity to sources of electromagnetic radiation, such as high-frequency transmitters or other high strength radiation devices.

CAUTION

A manufactured (mobile) home installation must conform with the Manufactured Home Construction and Safety Standard, Title 24 CFR, Part 3280, or when this Standard is not applicable, the Standard for Manufactured Home Installations (Manufactured Home Sites, Communities and Set-Ups), ANSI/NCS A225.1, and/or MH Series Mobile Homes, CAN/CSA Z240.

1.1 INSPECTION

As soon as unit is received, it should be inspected and noted for possible shipping damage during transportation. It is carrier's responsibility to cover the cost of shipping damage. Manufacturer or distributor will not accept the claims from dealer for any transportation damage.

1.2 LIMITATIONS

Refer to Fig. 2-2, 2-3, 2-4, 2-5 for unit physical data and to Table 6-1 & 6-2 for electrical data. If components are to be added to a unit they must meet local codes, they are to be installed at the dealer's and /or the customer's expense. Size of unit for proposed installation should be based on heat loss / heat gain calculations made in accordance with industry recognized procedures identified by the Air Conditioning Contractors of America.

2.0 INSTALLATION

2.1 PRE-INSTALLATION

Before installation, carefully check the following:

- 1. Unit should be installed in accordance with national and local safety codes, including but not limit to ANSI/NFPS No. 70 or Canadian Electrical Code Part 1, C22.1, local plumbing and wastewater codes and any other applicable codes.
- 2. For rooftop installation, be sure the structure has enough strength to support the weight of unit. Unit should be installed on roof curb and leveled.
- 3. For ground level installation, a level slab should be used.
- 4. Condenser airflow should not be restricted.
- 5. On applications when a roof curb is used, the unit must be positioned on the curb so the front of the unit is tight against the curb.

2.2 CLEARANCE

All units require certain clearance for proper operation and service. Refer to *Table 2-1* for the clearances required for construction, servicing and proper unit operation.

2.3 RIGGING AND HANDING

Exercise care when moving the unit. Do not remove any packaging until the unit is near the place of installation. Rig the unit by attaching chain or cable slings to the lifting holes provided in the base rails. Spreader bars, whose length exceeds the largest dimension across the unit, MUST be used across the top of the unit.

CAUTION

Before lifting, make sure the unit weight is distributed equally on the rigging cables so it will lift evenly.

Units may be moved or lifted with a forklift. Slotted openings in the base rails are provided for this purpose.

CAUTION

All panels must be secured in place when the unit is lifted. The condenser coils should be protected form rigging cable damage with plywood or other suitable material.

WARNING

Check the electric wire, water and gas pipeline layout inside the wall, floor and ceiling before installation. Do not implement drilling unless confirm safety with the user, especially for the hidden power wire. An electroprobe can be used to test whether a wire is passing by at the drilling location, to prevent physical injury or death caused by insulation broken cords.

WARNING

Check the power supply before installation. Ensure that the power supply must be reliably grounded following local, state and National Electrical Codes. If not, for example, if the ground wire is detected charged, installation is prohibited before it is rectified. Otherwise, there is a risk of fire and electric shock, causing physical injury or death.

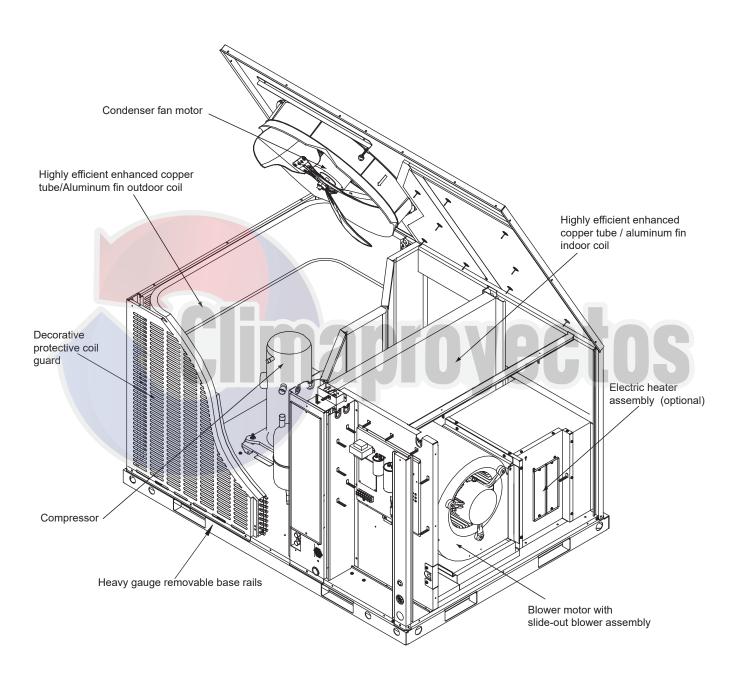


Fig. 2-1 Component Location

^{*} The above figure for reference purpose only.

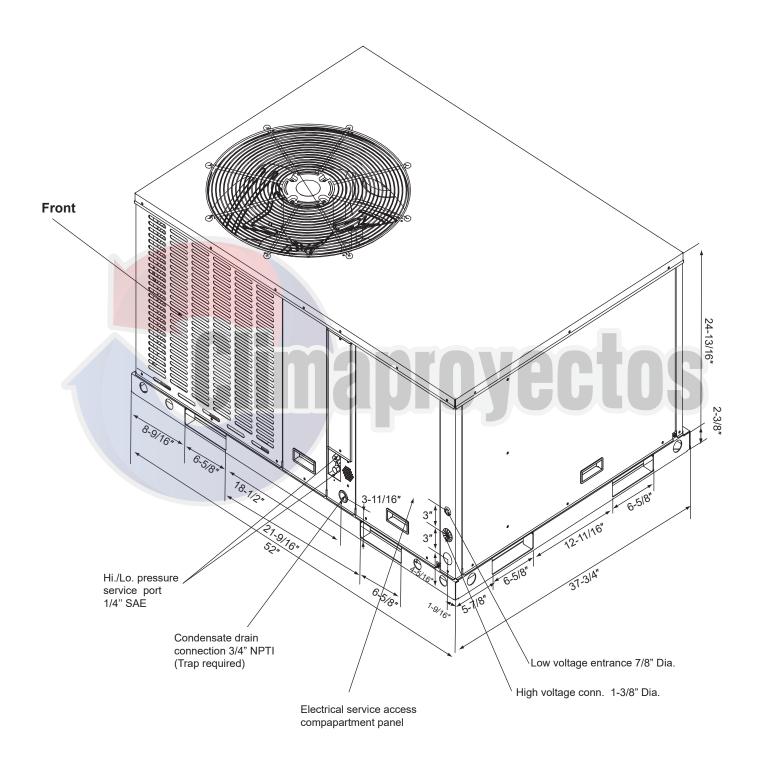
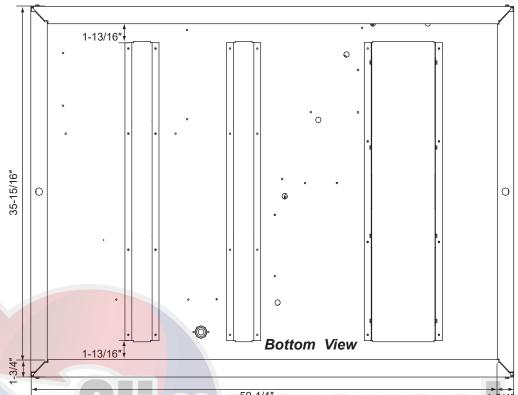



Fig. 2-2 Unit Dimensions

^{*} The above figure for reference purpose only.

Climaproyectos

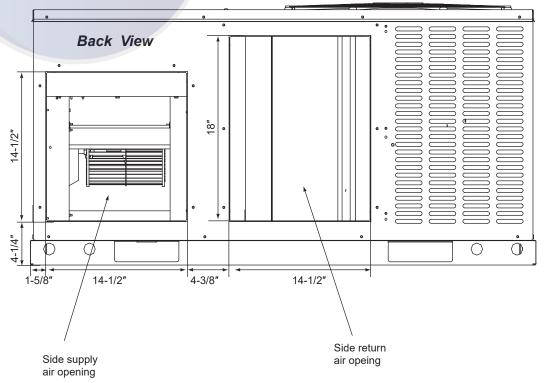


Fig. 2-3 Dimensions Back and Bottom

^{*} The above figure for reference purpose only.

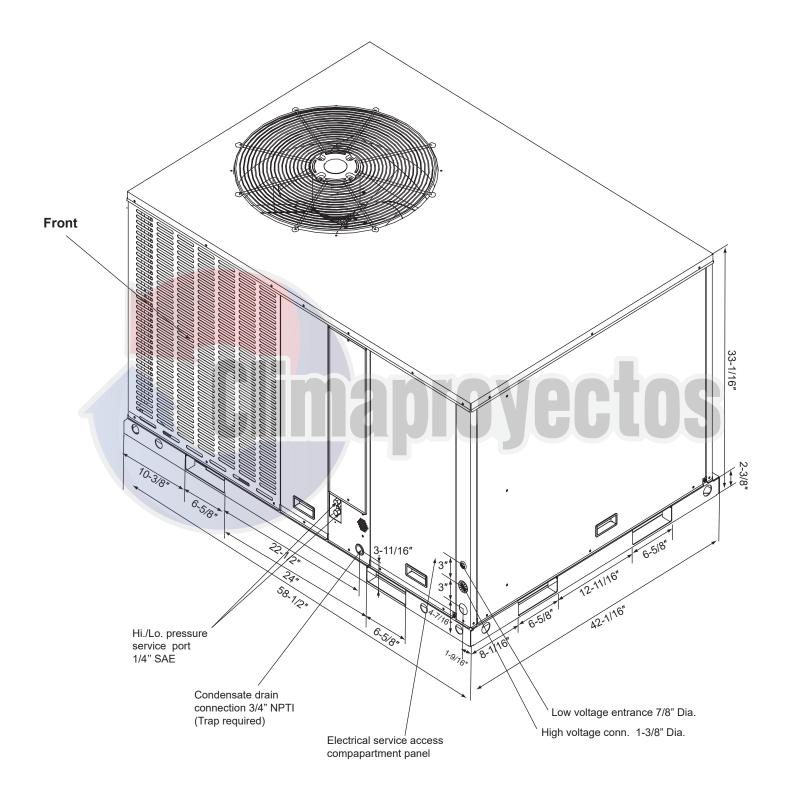


Fig. 2-4 Unit Dimensions

^{*} The above figure for reference purpose only.

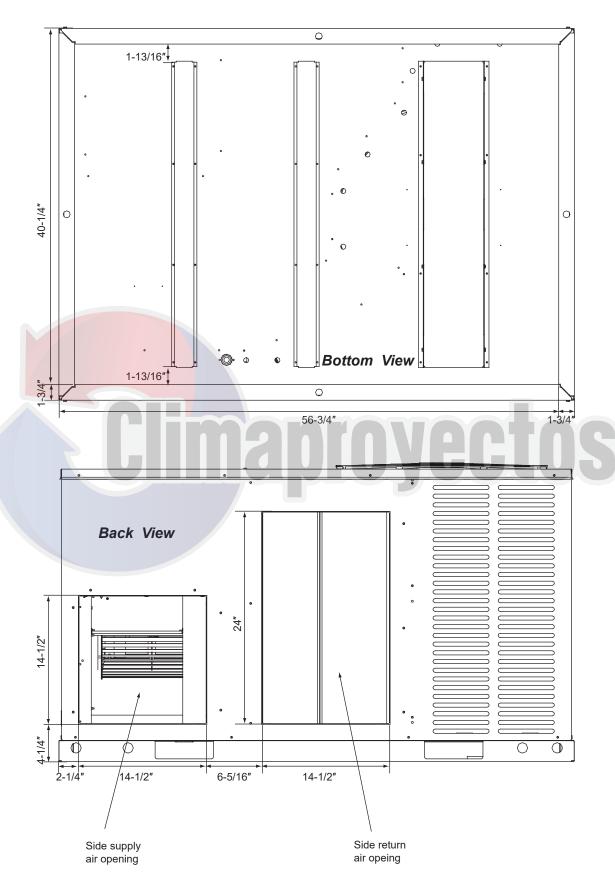


Fig. 2-5 Dimensions Back and Bottom

^{*} The above figure for reference purpose only.

Table 2-1: Unit Clearance

Direction	Distance (in.)	Direction	Distance (in.)
Top¹	60	Right	12
Front	30	Left	24
Rear	18²	Bottom ³	0

Duct clearance: 1 inch clearance for all sides of air supply duct.

- 1. Units must be installed outdoors. Over hanging structure or shrubs should not obscure condenser air discharge outlet.
- 2. The minimum clearance without economizer/fresh air damper. For distance with economicer/fresh air damper, please refer to the installation instructions provided with the accessory.
- 3. Units may be installed on combustible floors made from wood or class A, B or C roof covering materials.

NOTE

For units applied with a roof curb, the minimum clearance may be reduced from 1 inch to 1/2 inch between combustible roof curb material and this supply air duct.

NOTE

A unit with electric heaters with an inlet or outlet duct that penetrates the building structure supporting the unit shall be provided with a mounting base of noncombustible material so designed that, after the unit is installed, there will be no open passages through the supporting structure that would permit flame or hot gases from a fire originating in the space below the supporting structure to travel to the space above that structure. If the unit is intended to be installed on a supporting structure of combustible material, the base shall be so designed that the required clearance will be maintained between the supporting structure and the unit, plenum, and attached duct. Spacers necessary to provide required clearances shall be attached to the unit mounting base, and shall extend not less than 76 mm (3 in.) below the upper surface of the supporting structure, except that, in a unit designed for use only in a mobile home, the distance shall be not less than 19 mm (3/4 in.).

3.0 DUCTWORK

Ductwork should be sized and installed by the installing contractor in accordance with the Manual D from the Air Conditioning Contractors of America, and all national, state and local codes.

NOTE

On ductwork exposed to outside air space, use at least 2" of insulation and a vapor barrier. Flexible joint may be used to reduce noise.

A closed return duct system shall be used. This shall not preclude use of economizers or ventilation air intake. Flexible joints may be used in the supply and return duct work to minimize the transmission of noise.

CAUTION

When fastening duct work to the side duct flanges on the unit, insert the screws through the duct flanges only. DO NOT insert the screws through the casing. Outdoor duct work must be insulated and waterproofed.

NOTE

Be sure to note supply and return openings. Refer to Fig. 2-3 and 2-5 for information concerning supply and return air duct openings.

4.0 CONDENSATE DRAIN CONNECTION

Consult local codes for special requirements.

To provide extra protection from water damage, install an additional drain pan, provided by installer, under the entire unit with a separate drain line.

Manufacturer will not be responsible for any damages due to the failure to follow these requirements.

4.1 INSTALL DRAIN PIPE

- 1. Use the provided female NPT threaded fitting for outside connection and make sure that drain holes are not blocked.
- 2. Insulation may be needed for drain line to prevent sweating.
- 3. Drain pan has two drain connections on each side to provide flexibility of connection and drainage. Make sure proper pitch and plugging if second connection is not used.
- 4. Use a sealing compound on male pipe threads. Install the condensate drain line (NPT) to spill into an open drain.
- 5. Ensure a trap is included in the condensate drain line.

5.0 FILTERS

Units are shipped without a filter or filter racks. It is the responsibility of the installer to secure a filter in the return air ductwork or install a filter/frame Kit.

Filter must always be used and must be kept clean. Dirty filters may cause insufficient air delivery, decreasing unit efficiency and increasing operation costs and wear-and tear on the unit and controls.

Filters should be checked monthly; this is especially important since this unit is used for both heating and cooling.

6.0 ELECTRICAL WIRING

Field wiring must comply with the National Electric Code (NEC) or Canadian Electrical Code (CEC) and any applicable local ordinance.

WARNING

Disconnect all power to unit before installing or servicing. More than one disconnect switch may be required to de-energize the equipment. Hazardous voltage can cause severe personal injury or death.

6.1 POWER WIRING

- 1. Proper electrical power should be available at unit. Voltage tolerance should not be over 10% from rating voltage.
- 2. If any of the wire must be replaced, replacement wire must be the same type as shown in nameplate, wiring diagram and electrical data sheet.
- 3. Install a branch circuit disconnect of adequate size to handle starting current, located within sight of, and readily accessible to the unit.
- 4. ELECTRIC HEATER If the Electric Heater is installed, unit may be equipped with 30~60A. circuit breakers or fuse. These breaker(s) protect the internal wiring in the event of a short circuit and serve as a disconnect. Circuit breakers installed within the unit do not provide over-current protection of the supply wiring and therefore may be sized larger than the branch circuit protection.
- Supply circuit power wiring must be 221 °F minimum copper conductors only. See Electrical Data in this section for ampacity, wire size and circuit protector requirements. Supply circuit protective devices may be either fuses or "HACR" type circuit breakers.
- 1-3/8" knockouts inside the cabinet are provided for connection of power wiring to electric heater.
- Power wiring is connected to the power terminal block in unit electric cabinet.

See Electrical Heater Installation Instruction for details.

6.2 GROUNDING

WARNING

The unit must be permanently grounded. Failure to do so can result in electrical shock causing personal injury or death.

- The unit must be electrically grounded in accordance with local codes or the national electric code.
- Grounding may be accomplished by attaching ground wire(s) to ground lug(s) provided in the unit wiring compartment.

6.3 CONTROL WIRING

IMPORTANT: Class 2 low voltage control wiring SHOULD NOT be run in conduit with main power wiring and must be separated from power wiring, unless class 1 wire of proper voltage rating is used.

- Low voltage control wiring should be 18 AWG color-coded. For lengths longer than 50 ft, 16 AWG wire should be used.
- Two 7/8" holes can be used for control wires going into the unit, one on left side and one at the bottom.
- Make sure, after installation, separation of control wiring and power wiring has been maintained.

Thermostat should be mounted on an inside wall about 58" from floor and will not be affected by unconditioned air, sun and/or heat exposure. Follow the instruction carefully because there are many wiring requirements. See *Fig. 6-1* \sim 2, *Table 6-1*.

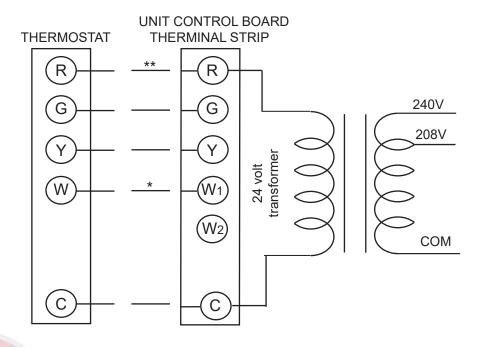


Fig. 6-1 Typical Field Control Wiring Diagram

- Minimum wire size of 18 AWG wire should be used for all field installed 24 volt wire.
- * Only required on units with supplemental electric heat.

CAUTION

Label all wire prior to disconnection when servicing controls. Wiring errors can cause improper and dangerous operation. Verify proper operation after servicing.

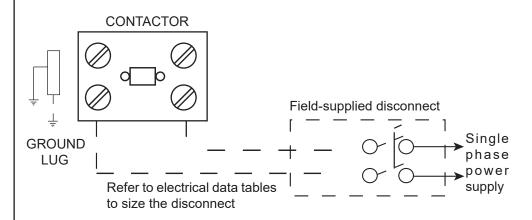


Fig. 6-2 Typical Field Power Wiring Diagram

Table 6-1: 13 SEER W/Without Electric Heat

			Compressors	হ	Motors (each)	Blower	Uni	Unit Circuit				Heater Circuit	suit	
(Tons)	Volt	RLA(A)	RLA(A) LRA(A) MCC(Q	FLA(A)	FLA(A) Amps	Amps	Max Fuse 2 Breaker 3 Size (Amps)	Model	KW	Stages	Amps	MCA1 (Amps)	Max Fuse 2 Breaker Size (Amps)
									EHK-05J	3.8/5	1	18.1/20.8	23/26	25/30
0	7	(0	(,	;			EHK-08J	5.6/7.5	1	27.1/31.3	34/39	35/40
208/2	208/230-1-60	13.0	72.0	6.22	1.0	4.7	21.4	99	EHK-10J	7.5/10	1	36.1/41.7	45/52	45/60
									EHK-15J 11.3/15	11.3/15	2	54.2/62.5	62/89	70/80
								~	EHK-05J	3.8/5	1	18.1/20.8	23/26	25/30
								7	EHK-08J	5.6/7.5	1	27.1/31.3	34/39	35/40
208/23	208/230-1-60	22.3	127.9	34.7	1.67	0.9	35.5	90	EHK-10J 7.5/10	7.5/10	1	36.1/41.7	45/52	20/60
									EHK-15J 11.3/15	11.3/15	2	54.2/62.5	82/89	70/80
									EHK-20J	15/20	2	72.2/83.3	90/104	90/110

036: Rotary compressor 060: Scroll compressor

Minimum Circuit Ampacity.
 MaximumOver Current Protection per Standard UL 1995.
 Fuse or HACRcircuit breaker size installed at factory orfield installed.

royectos

Table 6-2: 13 SEER Physical Data

0	Mod	dels
Component	36	60
Nominal Tonnage	3.0	5.0
Volt	208/230-1-60	208/230-1-60
ARI COOLING PERFORMANCE		
ARI net capacity (Btu)	34200	57000
EER	10.5	11.0
SEER	13	13
Nominal CFM	1220	2000
System power (kW)	3.26	5.18
Refrigerant type	R410A	R410A
Refrigerant charge (lb-oz)	4-14	6-6
DIMENSIONS (Inches)	7-17	0-0
Length	52	58-1/2
Width	37-3/4	42-1/16
	24-13/16	
Height ODERATING W.T. (Iba)		33-1-16
OPERATING WT. (lbs) COMPRESSORS	411	568
Type	Rotary	Scroll
Quantity	1	1
CONDENSER COIL DATA	'	'
Face area (Sq. Ft)	9.79	15.54
Rows	2.5	2
Fins per inch	21	21
Tube diameter	3/16	3/16
	interlaced	
Circuitry type EVAPORATOR COIL DATA	interiaced	interlaced
Face area (Sq. Ft)	3.63	6.43
Rows	3.03	3
	17	
Fins per inch Tube diameter		17
	9/32	9/32
Circuitry type	interlaced	interlaced
Refrigerant control	Orifice	Orifice
CONDENSER FAN DATA	20	00.5/0
Fan diameter (inch)	22	23-5/8
Туре	Prop	Prop
Drive type	Direct	Direct
No. speeds	1	1
Number of motors	1	1
Motor HP each	1/6(110W)	1/3(290W)
RPM	840	1075
Nominal total CFM	2565	3960
DIRECT DRIVE EVAP FAN DATA		
Quantity	1	1
Fan Size (Inch)	10×9	11×10-5/8
Туре	Centrifugal	Centrifugal
No. speeds	1	1
Motor HP each	1/2(375W)	3/4(600W)
RPM	1075	1075
Motor frame size	48	48
FILTERS	447	
(No.) Size Recommended in.	(1) 22×14×1	(1) 22×14×1

7.0 AIRFLOW PERFORMANCE

Airflow performance data is based on cooling performance with a coil and no filter in place. Use this performance table for appropriate unit size, external static applied to unit and allow operation within the minimum and maximum limits shown in table below for both cooling and electric heat operation.

7.1 AIRFLOW PERFORMANCE DATA

Table 7-1 Duct Application(208v)

Model	Motor				Ext	ternal Static	Pressure-In	ches W.C.[k	Pa]		
Number	Speed		0[0]	0.1[.02]	0.2[.05]	0.3[.07]	0.4[.10]	0.5[.12]	0.6[.15]	0.7[.17]	0.8[.20]
		CFM	1187	1132	1105	972	935	902	/	/	/
	Low-Factory	Current/A	2.1	1.9	2.1	2.1	2.0	1.9	/	1	/
		Power/W	439	402	490	473	455	432	1	1	1
		CFM	/	1	1276	1221	1135	1012	965	912	
36	Middle	Current/A	/	/	2.6	2.4	2.3	2.1	1.9	1.8	
		Power/W	/	1	601	546	512	496	432	410	
		CFM	1	1	1	1286	1223	1175	1112	1058	998
	High	Current/A	/	/	1	2.6	2.5	2.4	2.3	2.1	2.2
		Power/W	/	/	1	389	402	435	492	545	591
		CFM	1965	1937	1896	1837	1762	1666	1568	/	/
	Low-Factory	Current/A	3.3	3.2	3.1	3.0	2.9	2.7	2.6	1	1
		Power/W	688	666	643	618	592	562	534	/	/
		CFM	2131	2093	2043	1976	1894	1789	1676	1551	1
60	Middle	Current/A	3.7	3.6	3.5	3.4	3.2	3.1	2.9	2.8	/
		Power/W	774	750	722	695	666	631	597	562	1
		CFM	/		2175	2101	2007	1890	1763	1629	1
	High	Current/A	/	1	3.9	3.7	3.6	3.4	3.3	3.1	1
		Power/W	/	1	808	774	735	697	659	622	1

Table 7-2 Duct Application(230v)

Model	Motor				Ext	ternal Static	Pressure-In	ches W.C.[k	Pa]		
Number	Speed		0[0]	0.1[.02]	0.2[.05]	0.3[.07]	0.4[.10]	0.5[.12]	0.6[.15]	0.7[.17]	0.8[.20]
		CFM	1319	1304	1279	1249	1215	1169	1110	1003	921
	Low-Factory	Current/A	2.3	2.2	2.1	2.1	2.0	1.9	1.8	1.6	1.5
		Power/W	517	505	490	473	455	432	406	364	325
		CFM	1	/	/	/	1345	1292	1236	1151	947
36	Middle	Current/A	1	/	/	/	2.3	2.2	2.1	2.0	1.7
		Power/W	1	/	/	/	534	507	480	445	380
		CFM	1	/	/	/	/	/	1347	1257	1111
	High	Current/A	/	/	/	/	/	/	2.5	2.4	2.2
		Power/W	1	/	/	/	/	/	570	532	481
		CFM	2224	2175	2183	2048	1955	1845	1723	1585	/
	Low-Factory	Current/A	3.6	3.4	3.2	3.1	3.0	2.8	2.7	2.6	/
		Power/W	819	773	741	711	677	641	605	568	/
		CFM	/	/	2243	2162	2062	1947	1814	1676	1518
60	Middle	Current/A	/	/	3.6	3.5	3.3	3.2	3.0	2.9	2.7
		Power/W	/	/	828	791	753	716	675	635	593
		CFM	1	/	1	1	2163	2041	1900	1750	1588
	High	Current/A	1	1	1	1	3.7	3.5	3.4	3.2	3.0
		Power/W	1	1	1	1	827	786	745	703	660

^{*} The above airflow data for reference only.

^{*} In any stituation , the airflow of the unit should be in the range of 80% to 130% of 400CFM/Ton.

- The air distribution system has the greatest effect on airflow. The duct system is totally controlled by the contractor. For this reason, the contractor should use only industry-recognized procedures.
- A/C systems require a specified airflow. Each ton of cooling requires between 350 and 450 cubic feet of air per minute (CFM), or 400 CFM nominally.
- Duct design and construction should be carefully done. System performance can be lowered dramatically due to poor duct design.
- Air supply diffusers must be selected and located carefully. They must be sized and positoined to deliver treated air along the perimerter of the space. If they are too small for their intended airflow, they become noisy. If they are not located properly, they cause drafts. Reture air grilles must be properly sized to carry air back to the blower. If they are too small, they also cause noise.
- The installers should balance the air distribution system to ensure proper quiet airflow to all rooms in the home. This ensures a comfortable living space.
- An air velocity meter or airflow hood can give a reading of system CFM.
- During installation, installer should select the air speed according to the actual setting static pressure. Please refer to the Table 7-1 AIRFLOW PERFORMANCE DATA.

Table 7-3 Refrigerant charge for A/C system

	36					Cooling	Charge (Chart/Tab	leau De 0	Charge de	Refroidi	ssement			
С	ooling Mo	de			Outo	door Amb	ient Temp	perature(F)/Tempe	rature Am	ndiante Ex	cterieure(en F)		
	Mode		55	60	65	70	75	80	85	90	95	100	105	110	115
De F	Refroidisse	ement			High P	ressure D	etected \	/alve(psig	j)/Vanne I	Détecté d	e Pressio	n Haute(e	en psig)		
		165	/	/	303	332	351	365	380	405	421	452	470	500	525
		161	1	/	300	328	347	361	376	401	416	448	467	496	521
	psig)	157	1	1	297	324	343	357	372	397	410	444	464	492	517
Valve(psig)		153		286	294	320	339	353	368	393	405	440	461	488	513
e b	Basse(en	149	1	282	291	316	335	349	364	389	394	436	458	484	509
ak/	Bas	145	1	278	288	312	331	345	360	385	413	432	455	480	505
	ssion	141	253	274	285	308	327	341	356	381	409	428	452	476	501
Detected	SSi	137	248	270	282	304	323	337	352	377	405	424	449	472	497
Det	Pre	133	243	266	279	300	319	333	348	373	401	420	446	468	493
	de	129	238	262	276	296	315	329	344	369	397	416	443	464	489
Pressure	Détectée	125	233	258	273	292	311	325	340	365	393	412	440	460	485
	étec	121	228	254	270	288	307	321	336	361	389	408	437	456	481
Low		117	223	250	267	284	303	317	332	357	385	404	434	452	477
	Vanne	113	218	246	264	280	299	313	328	353	381	400	431	448	473
	>	109	213	242	261	276	295	309	324	349	377	396	428	444	469
		105	208	238	258	272	291	305	320	345	373	392	425	440	465

Table 7-4 Refrigerant charge for A/C system

	60					Cooling	Charge (Chart/Tab	leau De 0	Charge de	Refroidi	ssement			
C	ooling Mo	de			Outo	loor Amb	ient Temp	perature(F	-)/Tempe	rature Am	diante Ex	cterieure(en F)		
	Mode		55	60	65	70	75	80	85	90	95	100	105	110	115
De R	Refroidisse	ement		!	High P	ressure D	etected \	/alve(psig)/Vanne I	Détecté d	e Pressio	n Haute(e	en psig)		
		165	/	/	311	319	336	370	387	404	434	472	483	516	549
		161	/	/	307	316	333	366	384	401	430	468	481	513	545
	psig)	157	/	/	303	313	330	362	381	398	426	464	479	510	541
sig)	en	153	/	272	299	310	327	358	378	395	422	460	477	507	537
e(b	ısse(en	149	/	269	295	307	324	354	375	392	418	456	475	504	533
Valve(psig)	Bas	145	/	265	291	304	321	350	372	389	414	452	473	501	529
	sion	141	246	262	287	301	318	346	369	386	410	448	471	498	525
Detected	I O	137	241	258	283	298	315	342	366	383	406	444	469	495	521
Det	Pre	133	236	254	279	295	312	338	363	380	402	440	467	492	517
	de	129	231	250	275	292	309	334	360	377	398	436	465	489	513
Pressure	jeé	125	226	246	271	289	306	330	357	374	394	432	463	486	509
Pre	Détectée	121	221	242	267	286	303	326	354	371	390	428	461	483	505
Low		117	216	238	263	283	300	322	351	368	386	424	459	480	501
	Vanne	113	211	234	259	280	297	318	348	365	382	420	457	477	497
	>	109	210	230	255	277	294	314	346	362	378	416	455	474	493
		105	206	226	251	274	291	310	342	359	374	412	453	471	489

8.0 SYSTEM OPERATION

8.1 COMPRESSOR CRANKCASE HEATER(OPTIONAL)

Refrigerant migration during the off cycle can result in a noisy start up. Add a crankcase heater to minimize refrigeration migration, and to help eliminate any start up noise or bearing "wash out".

All heaters are located on the lower half of the compressor shell. Its purpose is to drive refrigerant from the compressor shell during long off cycles, thus preventing damage to the compressor during start-up.

At initial start-up or after extended shutdown periods, make sure the heater is energized for at least 12 hours before the compressor is started. (Disconnect switch on and wall thermostat off.)

The crankcase heater will start up or shut down according to the following logic:

The crankcase heater will start up when the compressor is off and T4<41°F.

The crankcase heater will shut down when T4 ≥ 45 °F

In any condition, the crankcase heater will shut down when the compressor is on

8.2 PROTECTION

Discharge temperature protection:

If discharge temp. is > 275°F, the compressor will shut down, If discharge temp. is < 194°F, the compressor will resume operation.

High pressure protection

If high pressure is >638PSIG,the compressor and the outdoor fan motor will stop running.

If high pressure is <464PSIG, the compressor and the outdoor fan motor will resume running(3 minutes delay necessary).

Low pressure protection

When low pressure is <21PSIG,the compressor and the outdoor fan motor will stop running.

When low pressure is >44PSIG, the compressor and the outdoor fan motor will resume running(3 minutes delay necessary).

In stand-by status, if low pressure protection was detected, the compressor will not start.

If protection cycles occur four times within 30 minutes, the compressor and outdoor fan will shut down. In this condition, the system needs to power on once more in order to keep on working.

8.3 THERMOSTAT SIGNALS

Table 8-1: Thermostat Signals

Signal	State	Board Function
	ON	Blower instant ON
G	OFF	Blower 90 sec. delay OFF
	ON	Blower instant ON Heater bank 1 elec.onstant ON
G & W1	OFF	Heater bank 1 elec.instant OFF Blower 90 sec. delay OFF
	ON	Blower instant ON Heater 1 instant ON Heater 2 instant ON
G & W1& W2	OFF	Blower 90 sec. delay OFF Heater 1 instant OFF Heater 2 instant OFF
0.8.4	ON	Blower instant ON Compressor and outdoor fan instant ON
G & Y	OFF	Compressor and outdoor fan instant OFF Blower fan delay 90 sec. OFF
G & Y & W1	ON	Blower instant ON Compressor and outdoor fan instant ON Heater 1 instant ON
G & f & WI	OFF	Blower fan delay 90 sec. OFF Compressor and outdoor fan instant OFF Heater 1 instant OFF
G & Y & W1 & W2	ON	Blower instant ON Compressor and outdoor fan instant ON Heater 1 instant ON Heater 2 instant ON
	OFF	Blower fan delay 90 sec. OFF Compressor and outdoor fan instant OFF Heater 1 instant OFF Heater 2 instant OFF

Table 8-2: Thermostat Wire Color

Thermostat Wire Color	Function
Red	Power wire
Black	Power wire
White	Heater signal 1
Green	Blower fan signal
Yellow	Compressor signal
Blue	Reversing valve signal
White/Black	Heater signal 2

9.0 OPERATION CHECK-UP

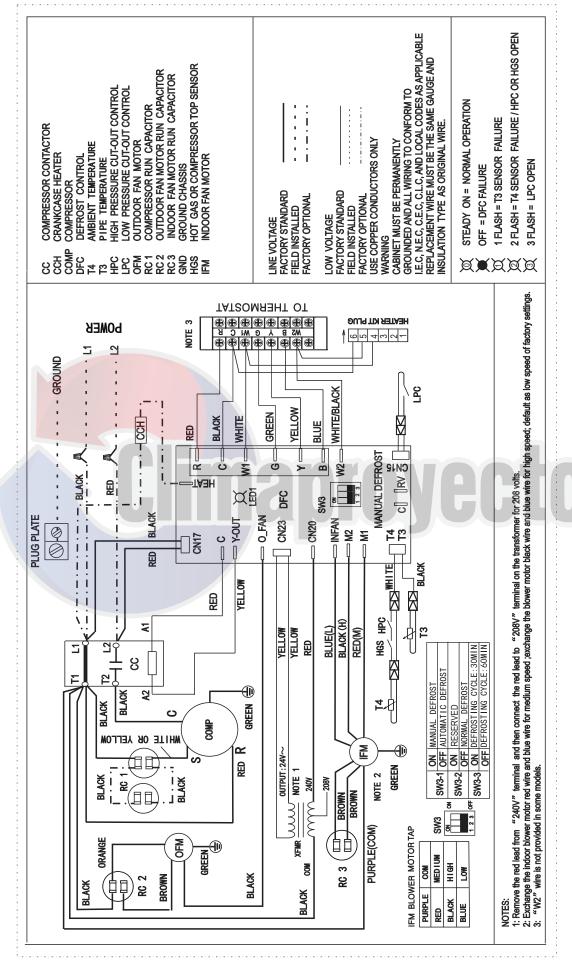
Cooling Startup

- 1. Turn thermostat to OFF and turn power to ON
- 2. Turn ON thermostat and set as high as possible
- 3. Turn Fan switch ON and indoor blower should run
- Turn fan switch to AUTO, system switch to COOL and thermostat tem perature setting below room temperature. Unit should run in COOLING mode.

After unit has run for a while, check the following:

- 1. Are fans running properly?
- 2. Is compressor running correctly?
- 3. Check refrigerant charge.
- 4. Check duct connection for leaks.
- 5. Check for tubing and sheet metal rattles.

(See Wiring Diagram for electric connection detail.)


10.0 TROUBLE SHOOTING

WARNING

Component trouble shooting requires opening control box with power on. Use extreme care while working on this condition. Check nameplate and this instruction when making wire connections.

AC System Wiring Diagram (36/60):

The wiring diagram show is for reference only, actual product may vary.

此页不做菲林仅作为电子文档说明

材料: 双胶纸80g 规格: 210*297mm 颜色: 黑白印刷

